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REPORT SUMMARY 

In this report we report on the investigations of e-beam controlled 

discharge of the XeF   laser discharge.    As in the case of KrF   we find that 

electron impact excitation and ionization of the rare gas metastables play 

a dominant role in the discharge physics.    We have also thoroughly investi- 

gated the formation and quenching kinetics of XeF    in e-beam pumped laser 

+ + mixtures.    From our data we conclude that both Xe    and Xe_ recombine 

with F    to form XeF  .    The two and three body quenching rate constants of 

XeF   by Ar and Xe have also been measured. 

•1 
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I.    DISCHARGE MODELING OF THE XeF    LASER 

A.    INTRODUCTION 

Laser action in XeF   was first achieved at AERL by pure e-beam 

pumping.*       Subsequently Burnham et al.       at NRL and Sutton et al.     "at 

Aerospace obtained laser action by UV preionization,  avalanche discharge 

pumping.    More recently we have obtained 40 mj of laser energy in an 
(4) 

e-beam ionized,  avalanche discharge. We have also investigated in d( - 

tail the discharge physics of the XeF laser containing ~ 99. 5% Ar,   0. 4%   ie 

and 0.1 - 0.2% NFj. 

The physics of rare gas/halogen discharges is dominated by the 

excited species when the fractional population of the rare gas metastables 

-9  (5) exceeds 10     .     '   For example, an important process in XeF laser dis- 

charges is the excitation of low lying metastables to higher lying states. 

This process can strongly influence the secondary electron energy distri- 

bution and therefore the efficiency of producing the metastables (which re- 

act with NF, to form XeF    -- the upper laser level).    The dominant ioniza- 

tion mechanism in XeF laser discharges is ionization of the xenon and arj»on 

metastables,   i. e. ,  two-step ionization.    For this discharge,  metastable 

7-1 ionization rates of 1-5 x 10    sec      are typical so that this process strongly 

(1) CA.  Brau and J. J.  Ewing, Appl.  Phys.  Lett.  27,  435 (1975). 

(2) R.  Burnham,  D. Harris and N.  Djeu, Appl.  Phys.  Lett.  28, 86 (1976). 

(3) D.C.  Sutton, S.N.  Suchard, O.L.  GibbandC.P.  Wange,  Appl.  Phys. 
Lett. 28,  522 (1976). 

(4) J.A.  Mangano,  J. H.  Jacob and J.B.  Dodge,  Appl.   Phys.  Lett., 
October 1,   1976. 

(5) J.H.  Jacob and J. A.  Mangano,  Appl.  Phys.  Lett.  28,  724(1976). 
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influences discharge stability.    These important excited state processes 

will be described in more detail subsequently. 

B.    SIMPLIFIED XeF KINETICS 

In this section the dominant kinetics of the XeF laser discharge will 

be discussed.    The high energy electrons  e    ionize the mixture forming 

mainly argon ions 

«T +  Ar -*   Ar     +   «T +   e. (1) 

The secondarly electrons  e     are rapidly lost by attachment to NF, to form 

the negative halogen ion 

eg  +   NF3  -   NF2 +   F" (2) 

The secondary electrons gain energy in the applied electric field and most 

of the discharge energy initially goes into producing argon metastable Ar 

e    +   Ar -*•   Ar    +   e s s (3) 

There are three principal reactions by which the argon metastables are lost 

Ar* + Xe -*   Xe** + Ar (4) 

•Ui 
i,; 

Ar + 2Ar -» Ar,  + Ar 

Ar* + NF3 - ArF* + NF2 

(5) 

(6) 

The rate constant for reaction (4) has been measured to be 1.8 x 10 

and 3 x 10"      cm /sec for Ar (   P_) and ar (  PQ) respectively. Reaction 

-10 

-32 6 3 (5) has a three-body rate constant of 1.7 x 10"      om /sec for Ar (   P.), 

0.9 x 10'3Z cm6/sec for Ar (*P ) and 1.6 x 10-32 cm6/sec for Ar (3P2). (7) 

(6) L.G.  Piper,  J.E. Velazco and D. W. Setser,  J.  Chem.  Phys.  59,  3323 
(1973). 

(7) M.  Bourene, O.  Dutnuit and J.  LeCalve,  J.  Chem.  Phys. 6_3,   1668(1975). 

MUM 
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Assuming a gas kinetic mixing rate of these states by electrons,  the loss 

rates of Ar    by reactions (4) and (5) will be only marginally affected.    So 
-10        3 - 32 we will assume a mean rate of 2 x 10"      cm /sec for reaction (4) and 10" 

cm /sec for reaction (5).    The argon metastables react with NF., to form 

• -103(8) ArF' with a rate constant of 1.4 x 10"      cm /sec. The branching ratio 

for this reaction is yet to be determined.    Extrapolating from reactions of 

Xe '  and Kr' with NF,'      one might conclude that reaction (6) has a branch- 

ing ratio of about 0. 5.    At a mixture pressure of four atmospheres with 0.4% 
7 

Xe and 0. 1% NF3,  the rates for reactions (4),   (5) and (6) are 8x10, 

7 7-1 * 2. 5 x 10    and 1.4 x 10    sec     .    So about 15% of the Ar    is channeled into 
* * * 

ArF   .    Most of the energy in ArF   will produce XeF    by the following re- 

action 

ArF*  +   Xe  -   XeF*  +   Ar (7) 

The remainder of the energy is presumably radiated on the ArF    bands. 

-9        3 / As reaction (7) proceeds with a rate constant ~ 10      <:m /sec,  75% of the 
3ft # 

ArF    is to be channeled into XeF   . 

The argon excimers Ar.    will be deactivated at least as rapidly by 
** 

Xe to form highly excited xenon states Xe     .    This means that 70-80% of 

the Ar,' will end up as Xe     .    The remainder of the Ar^    will be radiated. 

So we can conclude that the argon metastables transfer their energy to the 

xenon metastables with a 75% efficiency.    The Xe      thus formed will react 

with the NF, to form XeF  .    The branching ratio and rate constant for this 

reaction are not known.    However, from our discharge data we have inferred 
-10        3 

a reaction rate constant of 4 x 10        cm /sec and a branching ratio of 0. 7. 

(8)   J.E.  Velazco,  J.H.  Kolts and D. W.  Setser J.  Chem.   Phys.  65,   346!! 
(1976). 
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There are, of course, inefficiencies that arise from discharge 

pumping.    The most severe are the electron impact excitation of the argon 

and xenon metastables 

* ** 
e     +   Ar    -*•   Ar       +   e s s 

e    +   Xe    •*   Xe       +   e s s 

(8) 

(9) 

The rare gas metastables are similar to the alkalis and probably have large 

impact cross section to higher lying levels.    Figure 1 shows the expected 

cross section for Xe    (Cs).    Also shown in Figure 1 are the cross sections 

for the excitation of ground state Xe and Ar and the ionization of Xe    (Cs). 

C.    DISCHARGE PHYSICS 

As we have stated earlier, the physics of the discharge is strongly 

affected by the electron impact excitation and ionization of the rare gas 

metastables.    To model these effects, we have treated the xenon metasta- 

bles as cesium and the argon metastables as potassium, an analogy used 

successfully in predicting the emission spectra of rare-gas monohalides. 

Some of the electron-impact cross sections used in our model are 

shown in Figure 1.    The cross section for excitation from the 6s configura- 

* o2 tion to the 6p configuration in Cs (Xe  ) has a peak value of 90 A    at 8 eV. 

The peak value of the metastable-excitation is 40 times the peak value of 

the argon excitation cross section.    More important, however,  is the ability 

of .tiost of the electrons to excite the 6s-6p transitions -- which have a thresh- 

old of 1. 5 eV -- but only the high energy tail of the electron energy distiibu- 

tion can produce metastables from the ground state. 

In Figures 2,  3 and 4 we show the predictions of the Boltzmann 

code.    Figure 2 shows the percentage of energy that goes into producing 

10 
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Figure 1       Electron-Impact Cross Sections of Cesium (Xe ) and 
Xenon as Functions of Electron Energy 
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Xe    as a function of the fractional metastable population Xe  /(Kr +  Ar) 

for electric fields of 2-6 kv/cm arm.    It is apparent from Figure 2 that 

the efficiency of producing the metastables is a strong function of the Xe 

population.    For example,  the efficiency of forming Xe    is almost 45% when 

the fractional population is 10"    and the electric field is 2 kV/cm atm.    This 

efficiency decreases to less than 10% when the fractional population is in- 

-4 creased to 10     .    The decrease in efficiency can be made up by increasing 

the electric field.    Figure 3 shows the ionization rate as a function of the 

fractional metastable population.    Figure 4 is a plot of the average electron 

energy as a function of the fractional metastable population.    Notice that 

the electrons cool as the metastable population increases.    The cooling 

effect is much stronger at smaller electric fields. 

Using the rate constants predicted by the Boltzmann code, we have 

developed a self-consistent kinetics code that follows the temporal evolu- 

tion of the secondary electrons,  positive and negative ions,  Ar   , Ar«,  Xe^ 

and XeF   .    We couple our kinetics code to a simultaneous set of differential 

equations that describe the electrical circuit.    The outputs of this code in- 

clude the temporal evolution of the discharge current and voltage and the 
* 

XeF    fluorescence for a given preionization level,  capacitor charge voltage 

and gas mixture. 

The predictions of this discharge model have been compared with 

our XeF laser discharge experiments. The top trace in Figure 5 is the 

e-beam current in the discharge cavity. The lower trace is the fluores- 

cence as observed by a photomultiplier after the signal passes through a 

l/4 meter Jarrel Ash monochromator tuned to 3520 A. The cavity was 

filled with a 1 atm mix oi 99. 4% Ar,  0. 4% Xe and 0. 2% HVy    The dashed 

15 

< •» 



•i.i. i »m» i-i • i" vw.T'-JI i n 11, i,tmu0jm*sm!mmi* 

FLUORESCENCE   CALIBRATION 

PREOICTEO 
MEASURED 

0 100 200 300 
G485IX TIME  (ns) 

E-BEAM  CURRENT 
30A/DIV 

FLUORESCENCE 
AT 3520 Ä 

400 

Figure 5       Measured and Predicted Fluorescence for Pure E-Beam 
Pumping.    The discharge cavity contained 99. 4% Ar, 
0. 4% Xe and 0.2% NFj. 
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trace is the prediction of the code.    The amplitude of this predicted trace 

is adjusted to closely match the measured fluorescence.    This amplitude 

normalization was necessary as we did not have an absolute calibration on 

the fluorescence emanating from the discharge.    For subsequent compari- 

sons between experiment and theory no further adjustments were made. 

Once the XeF    fluorescence amplitude was normalized, we mea- 
* 

sured the magnitude and efficiency of discharge produced XeF    fluorescence 

enhancement.    Figure 6 shows the experimental results and theoretical pre- 

dictions when the 0.3 pF capacitor is charged to 8 kV.    The top trace is the 

discharge voltage.    The second trace is the discharge current.    The third 

trace is the XeF    fluorescence.    By the end of the pulse the enhancement 

in the fluorescence is 2. 5.    The metastables are being produced with the 

same efficiency as by pure e-beam pumping.    Note that the predicted 

fluorescence is 30% higher than the measured fluorescence.    The reduced 

measured fluorescence can be explained if the branching ratio from Xe 

(see reaction (4)) is 0. 7.    Further,  to predict the current in the discharge 

-10        3 we have used a rate constant for reaction (4) of 4 x 10 cm /sec.    If a 

slower rate constant is used the predicted discharge current does not reach 

a steady state value. 

D.    CONCLUSIONS 

In conclusion,  our discharge model predicts that rare gas metasta- 

bles can be produced with high efficiency (60%) as long as the fractional 
_5 

metastable population is kept sufficiently small (< 2-3 x 10     ).    We have 

also inferred that Xe      reacts with NF, to produce XeF    with a branching 

-10        3 ratio of 0.7.    The rate constant for this reaction is 4 x 10        cm /sec. 

17 
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Figure 6       Measured and Predicted Fluorescence When Capacitor 
is Charged to 8 kV 
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II.    FORMATION AND QUENCHING OF XeF 

A. INTRODUCTION 

* (1-5) Efficient scaling of the XeF    laser' to high average power re- 

quires knowledge of the processes responsible for th( formation and quench- 

ing of the upper laser level.    From the formation kinetics one can determine 

the upper state production efficiency.    The quenching kinetics enables one to 

choose the appropriate mix and determine the laser saturation flux.     '   For 

efficient laser power extraction the cavity flux should be much greater than 

the saturation flux.    In this section we report on measurements of the quench- 

ing rates of XeF    by Ar and Xe.    These rates were obtained by analyzing the 
* 

dependence of XeF    fluorescence intensity on the pan.ial pressures of Ar,  Xe 

and F?.    We have determined the rate constants for tiie following process es: 

XeF"*  +   Ar -*   8   +  4x 10'13 cm3/sec 

XeF*  +   Ar  +   M^   1.5 ±   0.5 x 10"32 c -n6/sec 

XeF* +   Xe  +   M -   3 +    1.5x 10"31 cm('/sec 

The third body M was mainly argon. 

B. EXPERIMENTAL APPARATUS 

Argon, xenon and fluorine were premixed and excited by a high energy 

e-beam.    The resulting XeF    fluorescence amplitude was measured by a 

photodiode via a 5 nm bandpass filter centered at 352 nm.    To ensure that 

the emission was representative of the overall kinetic processes, we re- 

peated the experiments with a 50 nm bandpass filter.    This changed the 

(9)   W.W.  Rigrod, J. Appl.  Phys.  36,  2487 (1965). 

19 
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amplitude of the photodiode signal by a constant factor over the whole pres- 

sure range of interest.    Hence we concluded that the attenuation of XeF 

(B 2, t7 -*   X 2, /?) radiation observed through the 5 nm bandpass filter 

was constant when the mixture pressure was varied.    The mixtures used 

contained mainly Ar, 7.6 torr F-, and varing amounts of Xe (from 7.6 

torr to 150 torr).    For a given run however we kept the xenon concentration 

fixed and increased the argon partial pressure from 0. 5 atmospheres up to 
/g \ 

4 atmospheres because at lower pressures the spectra changed radically 

This change is possibly due to the lack of collisional relaxation of the mani- 

fold of upper states at low gas pressures. 

Research grade (Matheson) Ar and Xe were used without any further 

purification.    The gases were analyzed by Gollob Analytical Service,  Inc. , 

and found to have less than 100 ppm of O,,  N^,  H20 and CO, impurities. 

The F? was 98% pure.    The electron gun apparatus used in these experi- 
(4) 

ments has been described previously. This device produces an electron 

beam with an energy of 150 keV and a current density of 0. 2 - 5 A/cm   for 

300 nsec.    The cross sectional dimensions of the e-beam were 2 cm x 22 cm. 

The beam interacted with the mixture in a teflon cell 0. 5 cm deep in the beam 

direction; this short dimension insured a linear increase in the energy deposi- 

tion with pressure for pressures up to 4 atmospheres. 

C.    ANALYSIS OF DATA 

Table 1 lists the dominant formation kinetics.    The high energy elec- 

trons deposit their energy into F_, Xe and Ar in a ratio roughly proportional 
m 

to their mass densities.    One important question in analyzing the experimen- 

tal data is to decide the major kinetic pathways of the positive ions Ar     and 

Xe   .    Reaction (12) gives a formation rate for ArF    that is proportional to 
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TABLE 1.    DOMINANT FORMATION REACTIONS 

+   Ar  + +   He + 
ArT        -  , 
Xe+   +   e  +   es 

e +   F, +        -F +F 
8 c. 

Ar+     +   F" + M -   ArF* +   M 

Ar+    +   Ar + M •*   Ar-     +   M 

Ar2    + F -*   ArF'  +   Ar 

ArF* +   Xe -   XeF* +   Ar 

Xe+     +  F"  +   M -   XeF* +   M 

Xe+     +   Xe +   M -   Xe2
+ +   M 

Xe2
+ +  F"  +        -   XeF* +   Xe 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

! 
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[F~]  [Ar   ] .    Since [F~] — [Ar   ] ~ \fl~T   (I  .   =  e-beam current) one expects 

that ArF^ formation and hence XeF    (via reaction (15) by this path to be pro- 

portional to I . .    Similarly reaction (l6) gives a production rate of XeF 
* 

linearly proportional to I  . .    The data showed XeF    fluorescence to vary 
2 2 linearly with e-beam current from 0. 2 A/cm   to 5 A/cm   for the full range 

of mixtures and pressures used,  which is thus consistent with the foregoing 

discussion.   It is also known,  however,  that reaction (13) and (17) are signif- 

icant sinks for Ar     and Xe    ,  especially at the higher pressures.    Only by 

hypothesizing reactions (14) and (18) can we maintain a total mechanism of 

ion chemistry which leaves XeF  ,  and hence its fluorescence,  linearly pro- 
* * 

portional to I ,.    Thus alternate species such as Ar .F   and Xe_F    cannot 

be major products of reactions (14) and (18). 

Once XeF    is formed, it can radiate (with spontaneous lifetime of 

16 nsec)'        or be quenched by F?,  Xe or Ar.    Recently Brashears,  Set ser 

.(12) and DesMarteau have measured the quenching rate constants of XeF    by 

F7 and Xe and found them to be 3. 3 x 10"      cm /set-, and 2.9 x 10        cm / 

sec respectively.    All processes involved reach a s'-.eady state on a time 

scale much less than the 300 nsec e-beam pulse.    So the photodiode signal 

can be written as 

(10) A.  Hawryluk,  J.A.  Mangano and J. H.  Jacob,   3rd Summer Colloquium 
on Electronic Transition Lasers, Sept. 7-10(1976).    D.C.  Lorents, 
R.M.  Hill,   D.L.  Huestis,  M.V.  McCusker and N. H.  Nakano, ibid. 

(11) G.J.  Eden and S.K.  Searles,   3rd Summer Colloquium on Electronic 
Transition Lasers, Sept. 7-10 (1976). 

(12) H. C.  Brashears,  Jr.,  D.W.  Setser and D.  DesMarteau (unpublished). 
These experiments were performed by photodissociating XeF£ in a 
cell capable of going to one atmosphere. 
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a  + aA     PAr 

y +   ^F2 
PF2 

+  ?Xe PXe +  ^ArPAr +  6Xe PXe P +  öAr PAr P 
(19) 

where  P„   ,   PA    and PY   are the pressures of F7,   Ar and Xe respectively. 
F~ Ar Xe £ 

P is the total pressure, a .     is proportional to the efficiency of generation of 

XeF' from the e-beam energy deposited in the Ar.    a   is the contribution to 

the XeF' formation from the e-beam energy deposited in Xe.    Both a   and 

a .     are constants for constant P„    and P     .    y is the inverse spontaneous Ar Ac Ar 

lifetime.    £       ,  etc. ,  are the two body quenching rate constants of F? etc. 
F2 L 

6V    and 6A     are the three body quenching rate constants by argon and xenon. 
.Xe A r 

We have ignored the three body quenching by F2 because of the low fluorine 

concentrations used.    For example,  a three-body rate constant of 10 
-30 

cm /sec would lower the measured two body rate constant by Ar by 20%. 

It is very difficult to obtain this rate constant because of the rapid quench- 

ing of XeF* by F2-(12) 

For each experimental run the signal intensity was measured as a 

function of P.     keeping P„    and PY    constant.    (A run consists of a series Ar Xe 

of experimental data for various values of P.    .)   Seven different runs were 

made for P„    =  7.6 u 

fitted to a polynomial 

made for Pv    =  7.6 up to 152 torr.    For each run the data so obtained was 
y\e 

S =   Z   A    P     * 
B      n    Ar 

(20) 

In Eq.  (20) we have assumed P.     =  P.    Typically it was found that a 3rd Ar 

• order polynomial adequately fitted the data. We are only interested in the 
• 

first two coefficients A~. and A    given by 
m 

A0  =  a/t 

23 
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We have abbreviated £   =  (7 + |       Pp    + £ Xe PXe> and TJ =  ?Ar+ 6Xe 

(12) P     ).    By using Brashears,  Setser and DesMarteau's resultsv        for £; F 

and  £ v    and assuming r|a/£a A     «1 (this assumption, which allows neglect- 

ing the second term in Eq.  (22) was verified aposteriori),   a   and a .     wore 

then calculated for each run from (3) and (22). 

We now define a quantity L (PA   ) given by 
.Ar 

L <PAr>  • 

a  + a A    P. Ar    Ar (23) 

From Eq.  (19) 

L (P.    )   =  n  P.     +  6A     PA v   Ar'        '     Ar      "Ar    Al 1 24) 

By at least squares fit,  of a quadratic in P.   ,  to the  experimental values 

of L (P.   ),  r\   and ÖÄ    were evaluated for each run.    By plotting  r\   vs I'      , Ar Ar Äc 

we obtained values for   £ A     and ö-y  • 
Ar J\G 

D.    RESULTS AND CONCLUSIONS 

Figure 7 shows the temporal variation of the e-beam current and 

XeF' fluorescence as detected by the photodiode.    Figure 8 shows a typical 

curve of the measured photodiode signal as a function of Ar pressure for the 

special case of 22.8 torr Xe and 7.6 torr F_.    Figure 9 shows a reduction 

of the data shown in Figure 8 to the form given by Eq.  (24).    Also shown is 

at least squares fit to the reduced data to obtain the value of t| 6A   .    Finally 

in Figure 8,  Eq.   (19) is plotted with the derived values of a.   ,  £.   ,   etc. 
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Figure 7       Typical Experimental Data.    The top trace is the 
e-beam current and the lower trace is the photodiode 
response. 
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Figure 8       The Open Circles are the Experimental Measurements 
of the XeF* Radiation Detected by a Photodiode.    Each 
experimental value shown above is the average of many 
data points.    The signal was through a 5 nm bandpass 
filter centered at 352 nm.    The curve is a plot of Eq.  (19). 

26 



T„,   J.1...I..IM,   u,    ii , •1.tijm.iiiwnii,tWiimiiiiWI,i i   i]ipiinj.ijiiii,mniilii,ti..n, 

-22.8 TORR 

Pp-»7.6 TORR 

4.0 

P.     (ATM) 
Ar 

.. < 

Figure 9       The Open Circles are the Data Shown in Figure 8 
Reduced to Eq.  (23).    The curve is a least squares 
fit to a quadratic in PAr,. 
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From these derived values we have also determined that for this case 

(T)Q)/(U      ) «10     .    The value of Ö.     was obtained by averaging the re- 

suits of the many different runs performed.    The large possible errors in 

the measured rates is because the loss of XeF   by two and three body 

quenching are the same order of magnitude over our range of experiments. 

Using the quenching rates given above,  one can compute the satura- 

tion flux   (f>     for an arbitrary mixture of Ar/Xe/F, from the following ex- 

(13) pressionv 

- h,v "X 
[1 + <*F2

PF2
+«XePXe+   5ArPAr> 

-1 

(25) 

+ <5XePXe+6ArPA 

«.< 

where a    is the stimulated cross section and hv   is the photon energy. s 
* -1 '•} 

From the XeF    spontaneous spectra we have estimated that a    « 4 x 10 

2 2 
cm  .    Hence we can evaluate h vy/o    to 0. 084 MW/cm  .    For a typical 

s 

laser mix containing 0. 1% F,,  0.5% Xe and 99.4% Ar at a total pressure 

2 of two atmospheres,  one obtains <f>    a 0. 13 MW/cm  .    It should be noted s 

that this saturation flux is correct in the limit that ths ground state popu- 

lation is negligible. 

In most e-beam pumped XeF    laser experiments performed to dato 

NF., has been used as the halogen bearing compound.       '     '     '   Brasheai s 

(13) Physically <J>    is the flux that reduced the gain to half the small sigru 1 
gain. 

(14) L. F.  Champagne,  J.G.  Eden,  N.W.  Harris and S.K. Searles,  3rd 
Summer Colloquium on Electronic Transition Lasers, Sept. 7-10 
(1976). 

(15) E. R. Ault,  R.S.  Bradford,  Jr. and M. L. Bhaumik, Appl.  Phys.  Lott. 
27, 413 (1975). 

(16) CA.  Brau and J. J.  Ewing (unpublished). 
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et al.'     ' have determined that the NF, quenching rate of XeF    is 16-17 

times slower than F,.    So $     for a mix containing NF, will be somewhat 

smaller than the value calculated above.    Further,  NF3 does not absorb 

at 350 nm.'     '   In spite of these two considerations,  the highest laser effi- 

ciencies obtained in XeF    have been about 5%.*     '      '   The maximum ex- 

f 181 pected efficiency is 17%.v     '   A possible explanation for the lower efficien- 

cies obtained experimentally is photoabsorption due to charged particles 
.   |1D\ # * (20) 

(for example F  y     ' and excited states (for example Xe   ,  Ar   ,  etc.).* 

(17) S.R.  LaPaglia and A.B.F.  Duncan,  J.  Chem.  Phys.   34,  1003(1961). 

(18) The metastable production efficiency in e-beam pumped Ar is about 
55%.    (See for example L. R.   Peterson and J. E.  Allen,  J.  Chem.   Phys. 
56, 6068 (1972).)   The maximum XeF* efficiency quoted is just the 
product of the quantum efficiency and the Ar* production efficiency. 

(19) A.  Mandl,  Phys.  Rev. A3,  Z51 (1971). 

(20) H.  Hyman, AERL, private communication. 
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APPENDIX A 

ELECTRON-BEAM-CONTROLLED DISCHARGE PUMPING 
OF THE XeF LASER 

In the last year there has been considerable interest in rare-gas 

monohalide lasers.    These lasers were first pumped by high-energy 

e-beams. The first discharge-pumped rare-gas monohalide laser 

was KrF  . This was achieved with an e-beam-controlled discharge. 

Subsequently,  lasing action has been obtained in both XeF    and KrF    by 

fast discharge techniques.'   '   '   In this letter we wish to report e-beam- 

controlled discharge pumping of XeF  . 

(8   91 The KrF laser discharge has been investigated in some detair   ' 

and we expect the physics of the XeF discharge to be very similar.    Elec- 

tron impact excitation and ionization of the rare-gas metastables are im- 

portant in determining the efficiency and stability of the XeF laser discharge. 

(1) S.K. Searles and C.A. Hart, Appl.  Phys.  Lett,  27,  243(1975). 

(2) CA.  Brau and J. J. Ewing,  Appl.  Phys.  Lett.  27, 435 (1975). 

(3) J.J. Ewing and CA.  Brau, Appl.  Phys.  Lett.  27,   350(1975). 

(4) E.R. Ault,  R.S.  Bradford,  andM.L.  Bhaumik,  Appl.  Phys.  Lett.  27, 
412 (1975). 

(5) J.A. Mangano and J.H.  Jacob, Appl.  Phys.  Lett.  27, 495(1975). 

(6) R.  Burnham,  D. Harris, and N.  Djeu, Appl.  Phys.  Lett.  28,  86 (1976). 

(7) D.G. Sutton, S.H.  Suchard,  D.L. Gibb, andC.P.  Wang, Appl.  Phy*. 
Lett. 28,  522 (1976). 

(8) J.D.  Daugherty,  J.A. Mangano, and J.H.  Jacob, Appl.  Phys.  Lett.  28, 
581 (1976). 

(9) J.H.  Jacob and J.A. Mangano, Appl.  Phys.  Lett.  28,  724(1976). 
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However,  it should be possible to have stable discharges in the XeF laser 

mixtures if we ensure that the Fy or NF, attachment rate is equal to or 
(8) greater than twice the metastable ionization rate. 

The experimental apparatus used for the laser experiments has buen 

(5) described previously. y       The cold cathode gun was modified to provide a 

high-energy electron current density of 1Z A/cm  .    Even with these cur- 

rent densities,  no lasing action was observed when the capacitor was un- 

charged (e-beam only).    The best lasing results were  obtained with mixtures 

of 99. 5% Ar,   0.4% Xe,  and 0. 1% NF, at a total pressure of 4 atm.    Figure 

A-l shows the temporal variation of the e-beam current,  discharge voltage 

and current,  and photodiode signal.    The laser pulse energy of 10 mj was 

measured by a Scientech calorimeter (model 360203) and by a calibrated 

photodiode.    The mirrors used under these conditions were a 30% output 

coupler and a max (> 99%) reflector.    Both mirrors had a radius of curva- 

ture of 1 m and were placed 100 cm apart.     The discharge was unstable 

and arced about 80 nsec after the capacitor voltage was switched across the 

anode and cathode.    The mean discharge current was 75 A/cm   and the mean 

electric field was 11 kV/cm.    The discharge energy into the mixture was about 

4. 9 J.    The energy deposited by the high-energy e-beam was about 2. 1 J. 

Hence the laser efficiency was only 0. 3%.    In Figure A-2 the top two traces 

show the spontaneous emission spectra when the discharge capacitor is un- 

charged (e-beam only) and when the capacitor is charged to 30 kV.    The 

difference between the two spectra is the result of the discharge arcing.    The 

bottom trace shows the XeF laser spectrum.    Lasing action occurs on two 

lines which have been identified as radiation from primarily 0-3 and 1-4 

bands (10) The laser and spontaneous emission are red degraded,  indicative 
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Figure A-l Oscillograms Showing Temporal Variation of E-Beam 
Current, Discharge Voltage, Discharge Current, and 
Laser Pulse 
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Figure A-2       Spontaneous Emission and Laser Spectra of XeF 
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of the fact that the internuclear separation of the upper level is larger than 

the lower level. 

Before discussing the reason for the observed efficiency, we will 

attempt to establish the kinetic chain that results in XeF  .    By discharge 

pumping the secondary electrons gain enough energy in the applied electric 

field to excite the rare-gas me ta stables.    We have verified, using the AERL 

Boltzmann code,  that for laser mixtures containing 99. 5% Ar and 0.4% Xe, 

most of the discharge energy goes into producing the argon metastables by 

the following reaction 

ed +   Ar —   Ar    +   e,. (A-l) 

There are three prinicpal reactions by which the argon metstables are lost 

ArV  +   Xe -   Xe*  +   Ar, (A-2) 

Ar'  +   2Ar -»   Ar, +   Ar, 

Ar*  +   NF3 -   ArF*  +   NF2- 

(A-3) 

(A-4) 

The rate constant for reaction (A-2) has been measured to be 

>2) and Ar (3PQ) 1.8 x 10"10 and 3 x 10"10 cm3/sec for Ar (3P_) and Ar (3Pn),  respectively.*11 

_ o o f. 
Reaction (A-3) has a three-body rate constant of 1.7 x 10"      cm /sec for Ar 

(3P1),  0.9 x 10"32 cm6/sec for Ar (1P1), and 1.6 x 10"32 cm /sec for Ar 

3 (12) (   P?). Assuming a gas kinetic mixing rate of these states by electrons, 

the loss rates of Ar    by reactions (A-2) and (A-3) will be only marginally 

(10) Joel Tellingheusen, G.C.  Tisone, J.M. Hoffman, and A.K. Hays 
(unpublished). 

(11) L.G.  Piper,  J.E. Velazco, and D.W.  Setser,  J.  Chem.  Phys.  59, 
3323 (1973). 

(12) M Bourene, O.  Dutuit,  and J. LeCalve,  J. Chem. Phys. 63,   1668 
(1975). 
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affected.    So we will assume a mean rate of 2 x 10        cm /sec for reaction 

(A-2) and 10"      cm /sec for reaction (A-3).    The argon metastables react 

with NF, to form ArF   with a rate constant of 1.4 x 10"      cm /sec.       ' 

The branching ratio for this reaction is yet to be determined.    Extrapola:ing 

* * (12) from reactions of Xe    and Kr   with NF, one might conclude that reaction 

(A-3) has a branching ratio of about 0.5.    At a mixture pressure of 4 atm 

with 0.4% Xe and 0. 1% NF3, the rates for reactions (A-2) - (A-4) are 

8 x 10   ,  2. 5 x 10  ,  and 1.4 x 10    cm /sec.    So about 15% of the Ar    is 

* * 
channeled into ArF  .   It is possible that some of the energy in ArF   will 

produce XeF   by the following reaction: 

ArF* +   Xe -  XeF* + Ar. A-5) 

The remainder of the energy is presumably radiated on the ArF    bands. 

Reaction (A-5) will have to proceed at a gas kinetic rate if 50% of the ArF 

is to be channeled into XeF 

(14) The argon excimers will be deactivated at least as rapidlyv        by 

Xe to form Xe  , which means that 70-80% of the Ar_ will end up as Xe   . 

The remainder of the Ar, will be radiated.    So we can conclude that the 

argon metastables transfer their energy to the xenon metastables with a 

75% efficiency.    The Xe    thus formed will react with the NF, to form XeF^ 

(12) with a unit branching ratio. The rate constant for this reaction is 

-11        3 * 9x10"      cm /sec.    Hence the Xe    lifetime is 100 nsec.    This perhaps 

explains why the laser power drops rapidly after the discharge arcs, but 

lasing continues at ever decreasing power for another 100 nsec.    (See 

Figure A-l.)   In the case of KrF   and Br-,  the laser action terminated 

(13) J.E. Velazco,  J. H. Kolts, and D.W.  Setser (unpublished). 

(14) According to D.W. Setser  a rate constant in excess of the gas kinetic 
rate is not likely. 
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much more rapidly.     '      '   This occurs because both F^ and Br^ quench 

(1 2) 
the rare-gas metastables much more rapidly than NF^. Perhaps half 

of the Ar" that does  not form Xe    will result in XeF    production.    So the 

effective branching ratio for producing XeF    from Ar    is between 0.75 and 

0.9. 

When the NF, is replaced by F,,   50% of the argon metastables are 

channeled into ArF   .    This is because the reaction that is equivalent to 

(A-4),  i.e. , 

Ar    +   F2 —   ArF    +   F, 

.(12) 

(A-6) 

proceeds at a 7-8 times faster ratev     ' and probably has a higher branching 

ratio.    If the lifetime of ArF    is the same as KrF    («10 nsec),  then even 

if the rate for reaction (A-5) were gas kinetic,  only about 50% of the energy 

in ArF    would result in XeF   .    So the effective branching ratio with F2 is 

0. 5-0.75.    With F, mixtures we have observed that the fluorescence is 

smaller by about a factor of 5.    This reduced fluorescence cannot be ex- 

plained by the above kinetics.    It is possible that F, deactivates XeF    with 

a rate constant of 5 x 10"      cm /sec.    If the radiative lifetime of XeF' is 

in fact 50 nsec,'     '      '   and assuming that the deactivation of XeF    is 

negligible,  the relative decreased fluorescence can then be understood. 

A laser efficiency of 0. 3% was obtained with 0. 1% NF3,  0.4% Xe, 

99. 5% Ar mix at 4 atm.    From the fluorescence enhancement when the 

discharge was applied (over that achieved with the e-beam alone) we esti- 

mate the efficiency of producing argon metastables to be about 25%.    Using 

the estimated branching ratio of 0. 8 and a quantum efficiency of 35%, we 

estimate that the production efficiency for XeF    is 7% which is still about 

(15) J.J.  Ewing,  J.H.  Jacob,  J.A. Mangano,  and H.  Brown, Appl.  Phys. 
Lett.  28, 656 (1976). 

(16) CA.  Brau and J.J.  Ewing (unpublished). 
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20 times larger than the observed laser efficiency.    There are two possible 

reasons for the difference between the production efficiency and laser 

efficiency.    First the cavity flux could have been a factor of 10 or so srru Her 

than the saturation flux <j>   ,  which can be expressed as 

*8  =   <hv/CTsTr) (1 + T*/V' 

where  hv   is the photon energy, a     is the stimulated emission cross sec- 
s 

tion,  and j    and T    are the radiative lifetime and inverse quenching rate r q * w 

* 5 of XeF  ,  respectively..    The cavity flux is estimated to be about 3 x 10 

W/cm .    To explain the observed laser efficiency,   <£     would have to be 
s 

about 3x10    W/cm .    From this we can infer that r    has to be of order 
q 

5 nsec.    Such a rapid quenching rate wou.d be possible if xenon quenched 

(17) Another possibility * -10        3/ XeF   with a rate constant of 5x10        en /sec 
«ig Q O 

is that the electrons quench XeF   with a rate constant of 3 x 10"    cm /sec 

-16        '' which implies a cross section of about 3  c 10"      cm''. 

A second possible explanation for the difference between production 

efficiency and laser efficiency is excited state absorption.    Under conditions 

of the experiment we estimate the rare-gas metastable density to be about 

15 3 5x10    /cm  .    The photoabsorption cross section would then have to be 

-17        2 about 1.5x10        cm   to explain the observed efficiency.    However,  such 

(18) a cross section for photoionization of the metastables is unlikely. Also, 

since high (tssb%) efficiencies were obtained in the XeF   laser with e-beam 

(19) pumping/     ' it is unlikely that excited states can have such a high photo- 

absorption cross section. 

(17) It is also a possibility that NF3 quenching is important.    This implies 
a reaction rate of 2 x 10-9 cm*/8ec" 

(18) H.  Hyman (private communication). 

(19) CA.  Brau and J.J.  Ewing (unpublished). 
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In conclusion, the most likely mechanism responsible for the observed 

efficiency in XeF    is quenching of XeF   by heavy bodies such as Xe or Ar. 

If so, the efficiency can be increased by increasing the laser cavity flux. 

The authors wish to thank J.D. Daugherty and D.W. Setser for many 

useful discussions during the course of this work. 
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